Regulation of volume-sensitive outwardly rectifying anion channels in pulmonary arterial smooth muscle cells by PKC.

نویسندگان

  • Juming Zhong
  • Ge-Xin Wang
  • William J Hatton
  • Ilia A Yamboliev
  • Michael P Walsh
  • Joseph R Hume
چکیده

We tested the possible role of endogenous protein kinase C (PKC) in the regulation of native volume-sensitive organic osmolyte and anion channels (VSOACs) in acutely dispersed canine pulmonary artery smooth muscle cells (PASMC). Hypotonic cell swelling activated native volume-regulated Cl(-) currents (I(Cl.vol)) which could be reversed by exposure to phorbol 12,13-dibutyrate (0.1 microM) or by hypertonic cell shrinkage. Under isotonic conditions, calphostin C (0.1 microM) or Ro-31-8425 (0.1 microM), inhibitors of both conventional and novel PKC isozymes, significantly activated I(Cl.vol) and prevented further modulation by subsequent hypotonic cell swelling. Bisindolylmaleimide (0.1 microM), a selective conventional PKC inhibitor, was without effect. Dialyzing acutely dispersed and cultured PASMC with epsilon V1-2 (10 microM), a translocation inhibitory peptide derived from the V1 region of epsilon PKC, activated I(Cl.vol) under isotonic conditions and prevented further modulation by cell volume changes. Dialyzing PASMC with beta C2-2 (10 microM), a translocation inhibitory peptide derived from the C2 region of beta PKC, had no detectable effect. Immunohistochemistry in cultured canine PASMC verified that hypotonic cell swelling is accompanied by translocation of epsilon PKC from the vicinity of the membrane to cytoplasmic and perinuclear locations. These data suggest that membrane-bound epsilon PKC controls the activation state of native VSOACs in canine PASMC under isotonic and anisotonic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypotonic activation of volume-sensitive outwardly rectifying chloride channels in cultured PASMCs is modulated by SGK.

The serum- and glucocorticoid-inducible kinase (SGK) is a serine/threonine protein kinase (PK) transcriptionally regulated by corticoids, serum, and cell volume. SGK regulates cell volume of various cells by effects on Na(+) and K(+) transport through membrane channels. We hypothesized a role for SGK in the activation of volume-sensitive osmolyte and anion channels (VSOACs) in cultured canine p...

متن کامل

Hyposmotic challenge inhibits inward rectifying K+ channels in cerebral arterial smooth muscle cells.

This study sought to define whether inward rectifying K(+) (K(IR)) channels were modulated by vasoactive stimuli known to depolarize and constrict intact cerebral arteries. Using pressure myography and patch-clamp electrophysiology, initial experiments revealed a Ba(2+)-sensitive K(IR) current in cerebral arterial smooth muscle cells that was active over a physiological range of membrane potent...

متن کامل

Protein kinase C inhibits BKCa channel activity in pulmonary arterial smooth muscle.

Signaling mechanisms that elevate cyclic AMP (cAMP) activate large-conductance, calcium- and voltage-activated potassium (BKCa) channels in pulmonary vascular smooth muscle and cause pulmonary vasodilatation. BKCa channel modulation is important in the regulation of pulmonary arterial pressure, and inhibition (closing) of the BKCa channel has been implicated in the development of pulmonary vaso...

متن کامل

Protein kinase C regulates vascular myogenic tone through activation of TRPM4.

Myogenic vasoconstriction results from pressure-induced vascular smooth muscle cell depolarization and Ca(2+) influx via voltage-dependent Ca(2+) channels, a process that is significantly attenuated by inhibition of protein kinase C (PKC). It was recently reported that the melastatin transient receptor potential (TRP) channel TRPM4 is a critical mediator of pressure-induced smooth muscle depola...

متن کامل

Modulation of human cardiovascular outward rectifying chloride channel by intra- and extracellular ATP.

The macroscopic volume-regulated anion current (VRAC) is regulated by both intracellular and extracellular ATP, which has important implications in signaling and regulation of cellular excitability. The outwardly rectifying Cl(-) channel (ORCC) is a major contributor to the VRAC. This study investigated the effects of intracellular and extracellular ATP on the ORCCs expressed in the human cardi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 283 6  شماره 

صفحات  -

تاریخ انتشار 2002